
Simulation Modelling Practice and Theory 114 (2022) 102419

Available online 8 October 2021
1569-190X/© 2021 Elsevier B.V. All rights reserved.

Integration and Automation of Modeling of Biological
Cell Processes

Cristina Ruiz-Martin a,*, Gabriel A. Wainer a, Laouen Belloli b

a Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive. Ottawa, ON. K1S 5B6. CANADA
b Instituto de Ciencias de la Computación (ICC). CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina

A R T I C L E I N F O

Keywords:
Metabolic Networks
DEVS
SBML
Automatic model generation
Simulation

A B S T R A C T

The System Biology Markup Language (SBML) has been used to build numerous models of bio-
logical processes. Here we introduce a new method to translate SBML specifications of cellular
models into formal specifications for analysis and simulation. To do so we define a generic bio-
logical model architecture that can be instantiated with different parameters for different types of
cells and at different levels of detail using the information available in SBML models. We discuss
said architecture, a prototype implementation and different examples of use of the method with a
synthetic model and model of E. Coli.

1. Introduction

Understanding biological processes on cells plays a fundamental role in biology, biochemistry, and medicine. In particular, the
study of Metabolic Networks is important to understand the metabolism of the cells. Each possible reaction path within the Metabolic
Network, called a Metabolic Pathway, defines the chained reactions that produce transformations of different metabolites. As we can
have an exponential number of Metabolic Pathways, the study of the cell’s metabolism becomes overly complex [1]; however, only a
small number of pathways take place inside each specific cell.

Observation studies of metabolic pathways are usually expensive and time-consuming. Instead, Modeling and Simulation (M&S) is
a good method to study the problem. Building a model allows us to easily conduct a larger number of studies without significantly
increasing the cost or duration of the research. Consequently, various M&S approaches have been used to study the biological phe-
nomena. For example, in [2], a discrete-event multi-level model was used to study metabolite channeling (commonly modelled with
differential equations at macro-view); and JAMES II was used for integrating various formalisms for different components of the
biological system [3]. A comprehensive review of such computational tools can be found in [4]. Regardless of the approach used,
biological systems models can be complex to simulate, and it is useful to divide them into smaller pieces that can be tested inde-
pendently and then combined into larger models. For example, in [5], the authors present a model of mycoplasma genitalium composed
of 28 independent models of the different parts of the bacterium integrated into a multi-level cell model.

Sharing models of biological process can be improved using standards like the System Biology Markup Language (SBML), which
was defined to represent biological systems using a common representation [6]. SBML standardizes data storage, which helps building
tools, modeling, visualization, and validation [7]. Although SBML is widely used and there is a vast number of biological data available
in SBML, transforming SBML models into simulation models for analysis is still time-consuming. An automated process for M&S of

* Corresponding author.
E-mail addresses: cristinaruizmartin@sce.carleton.ca (C. Ruiz-Martin), gwainer@sce.carleton.ca (G.A. Wainer).

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

https://doi.org/10.1016/j.simpat.2021.102419
Received 5 July 2021; Received in revised form 30 September 2021; Accepted 4 October 2021

mailto:cristinaruizmartin@sce.carleton.ca
mailto:gwainer@sce.carleton.ca
www.sciencedirect.com/science/journal/1569190X
https://www.elsevier.com/locate/simpat
https://doi.org/10.1016/j.simpat.2021.102419
https://doi.org/10.1016/j.simpat.2021.102419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2021.102419&domain=pdf
https://doi.org/10.1016/j.simpat.2021.102419

Simulation Modelling Practice and Theory 114 (2022) 102419

2

models defined using SBML can save time and improve model verification and validation, as well as helping obtaining results that can
be replicated [8]. For example, in [9], the authors present a platform for modeling reaction kinetics of biological with SBML integrated
with DEVS (Discrete Event Systems Specification), a formal modeling and simulation methodology to build hierarchical and modular
models [10]. In [11], SBMLtoODEpy was used to convert SBML models into Python classes to facilitate the integration of biological
reactions models into larger biomedical systems modeling projects written in Python. However, these results are usually hard to reuse
and to integrate with other models. For example, [9] is specific to reaction kinetics, and [11] converts the SBML model into a Python
class, however, it does not provide a full model that can be simulated.

Our research contributions focus on the problems above by providing a method to automate the generation of formal models and
their simulations from SBML standard models. We propose a method to build formal models that can be (1) automatically instantiated
with any SBML source, and (2) integrated with other models. We define a general modeling architecture for cells that can be
instantiated with different parameters for different types of cells, and at different levels of detail. Additionally, as we use DEVS, a
hierarchical and modular approach, we also improve model integration. We use SBML models as sources and define a method to
manage the SBML files and use their information to instantiate the proposed architecture and generate DEVS models automatically.
This process allows us to reuse existing models previously developed in SBML. Additionally, we include the possibility of combining
SBML models to develop larger ones. In [12], we introduced a preliminary version of this research in which we explored the ideas of
using SMBL to generate simulation models. Here, we extend the research focusing on model architecture and the automatic generation
of models. The main contributions of this paper can be summarized as follows:

• We define a flexible structure for modeling biological cells, offering a general framework that can be adapted, allowing to integrate
new models when needed. The structure considers general aspect of cells, allowing changes to external components.

• We introduce a formal structure as a container to integrate different models representing the cell’s mechanisms. This attempts to
modularize the parts of a cell so each new model can be modeled using a different approach without affecting the rest.

• We provide a model structure that directly maps a biological cell into compartments coupled together, resulting in a model that
emerges from the interaction between its sub-models (as it happens in real cells). Additionally, we do not assume anything about
how each sub-model is defined: we only need their inputs and outputs (according to DEVS semantic). The model structure becomes
flexible and new components can be added provided that their interface is consistent with the existing components’ interface (or
adapting the interface).

• We automate model generation for studying biological processes using SBML and DEVS simulation. SBML describes the model and
its parameters which are used to generate a model structure and its Metabolic Pathways ready for running simulations.

The rest of the paper is organized as follows. In section 2, we summarize the related work on the study of biological processes and
simulation tools. In section 3, we focus on the model development process, and we explain the DEVS model for a Cell. In section 4, we
present different case studies.

2. Background

This research focuses on the study of Metabolic Pathways through M&S. Based on their abstraction level, the models can be
classified as micro or macro view models. Macro-view models describe the behavior of the system as one piece, abstracting all the sub-
systems and their interactions. On the other hand, micro-view models divide the system into sub-systems that can be modeled
independently. The same phenomena can be modeled at both abstraction levels. For example, in [13] a micro-view approach is used to
model glycolysis, while in [14] it is modeled using the concentration of metabolites (i.e., substrates and products).

We can also consider mathematical or computational models. Mathematical models are purely analytical such as in [14], whereas
computational models use computer programs in which the logic describes the phenomena to be modeled, such as in [13].

Models can also be classified on their time representation. Some models use a continuous representation of time, while others use
discrete time. For instance, the model in [14] uses a continuous time representation and the model in [13] is a discrete-event model.

Different approaches are not independent of each other. We can combine micro and micro view approaches within the same model.
In [15][2], the authors explain the advantages of combining macro and micro levels as using various levels allows the models to
describe each part at their right level of abstraction. In [2], a discrete event multi-level model is used to study metabolite channeling, a
process commonly modeled with differential equations (macro-view). Although this is a continuous process, the number of metabolites
in a compartment is discrete.

Biological processes can easily lead to the definition of large models and the need to run complex simulations. To deal with this
complexity we can build submodels of each of biological system, and then integrate them into a model of the entire system. In [5] a
model is divided into different components modeled independently; in [3], the JAMES II framework is used to mix different formalisms
for each component. CytoSolve [16] allows integrating multiple pathway models implemented independently running all simulations
in parallel and coordinating their inputs and outputs to generate a final single result from the model interactions.

Another key factor to consider is reusability, a challenge in M&S. In [17], the authors discuss the importance of having modular
models about and the key role of standardization to achieve model reusability. Along the same lines, [18] emphasizes the importance
of hierarchical modeling and composition in systems biology as well as key challenges in the development of computational models
(modularity, standardization, reusability, and complexity).

It is important to count with tools to automate and simplify the M&S process. The System Biology Markup Language (SBML) was
defined with this purpose [6]. SBML allows storing and exchanging models, and it is useful for modeling visualization and validation

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

3

[7]. The main advantage of SBML is the standardization of biology data storage, which facilitate managing information and obtaining
relevant results that can be replicated [8]. For instance, in [9], SBML was integrated with DEVS [10] to develop a platform for
modeling reaction kinetics of biological systems. The authors used the LibSBML library [19] to translate the chemical reactions into
differential equations and to generate macro-view models that can be easily shared. In [11] the authors developed a SBMLtoODEpy to
convert SBML models into Python classes to facilitate the integration of biological reactions models into larger biomedical systems
modeling projects written in Python. Similarity, in [20], the authors developed SBML2Modelica to integrate biological reactions into
larger Modelica models. In [21] the authors presented a database system designed specifically to store biochemical pathways in SBML.
In [22], the authors proposed the SBML-diff tool, which allows to compare SBML Models at different levels of detail visually. SBML has
also been applied to model the spread of diseases. For example, in [23], the authors present the SBML Array package to represent
microsimulation disease models. A complete definition of all the elements in an SBML model can be found in [24], and a summary
description is included in Appendix I.

As discussed earlier, we propose a new method to model Metabolic Pathways built as a modular container integrating all the
components in the cell subsystems using the DEVS formalism. This allows us reusing the model structure and easily adapt it to each
cell. We propose to instantiate the general model for Metabolic Pathways using SBML, automating the modeling process and reusing
models. DEVS manages complexity by using a modular and hierarchical approach [10]. The system under study is modeled using (1)
basic behavioral models called “atomic”, and (2) structural composite models called coupled models (a formal specification is provided
in Appendix II). This is useful to model biological systems because it allows using different modeling levels of abstraction for each
submodel. Additionally, this improves model reuse, reducing development time and verification reusing existing models. Model
definition, simulation, and experimentation are separated. There are numerous DEVS simulators available [25] such as Adevs [26],
PyDEVS [27], VLE (Virtual Laboratory Environment) [28], CD++ [29] (which also allows defining Cell-DEVS [30] models), MS4Me
[31], and DEVS-Suite [32]. We use Cadmium [33], a DEVS simulator implemented in C++17 using the Boost library standard. At the
user level, Cadmium uses two C++ classes for defining atomic and coupled models. Atomic models are defined in a class that provides
a structure to define the state of the model and the methods to define behavior. Coupled models are defined instantiating a different
class which includes input/output ports, submodels, external input and output couplings, and internal links.

Various researchers used DEVS for modelling biological systems. In [15], Multi-Level-DEVS (ml-DEVS) was proposed to support
multi-level models explicitly: the information at macro-levels can be accessed from micro-level components and vice versa. In [2], a
discrete event multi-level model is used to study metabolite channeling. Differential equations are usually used to model continuous
systems. However, metabolite channeling can be better modeled by using discrete components. Using a multi-level model, the authors
address the problem of having a system with continuous and discrete components. In [34], the authors model the evolution of living
organisms using DEVS; they propose a micro-view approach where the basic components are individual organisms. Their model of an
organism includes the internal organization (structure and functions), and a set of rules for conditional mutation, survival, and
self-reproduction. Similarly, in [35], the role of consanguineous marriages in the evolution of congenital disorders in a population was
studied. In [36], the authors model glycolysis, modeling each step in the reaction pathway as a DEVS atomic model.

Another research also uses SBML combined with DEVS. The SBML-DEVS platform [37] models reaction kinetics of biological
systems and use SBML to save and read the model’s data. The authors used the LibSBML library to translate the chemical reactions into
differential equations and generate macro-view models that can easily be share.

The above-mentioned research focusses on different subsystems of cells, or in a particular cell. Here we propose a method to build
computational models that can be applied to different components within a cell, focusing on how to integrate different models of the
cell subsystems. To allow reuse, we propose a general model structure abstracted from cells aspects that can be easily adapted.

The proposed method, and resulting architecture and tool, can be easily integrated on cloud environments, providing M&S as a
Service (MSaaS) for biological systems. In [38], we defined a method for distributed simulation of DEVS models using SOAP-based web
services. This research was later extended in [39], to improve interoperability via decoupling systems implementations building the
first RESTful Interoperability Simulation Environment, an all-purpose WS-based distributed simulation middleware that decouples
design and implementation. In [40], we show how to simplify Web APIs for M&S applications as they are rarely used for MSaaS
defining an architecture for web services Mashups. Similarly, since 2013, NATO is working on a framework to provide MSaaS [41], and
MSaaS is available in recent applications in industry [42], and in recent years advanced cloud services, including microservices [43],
edge and cloud computing [44]. The models defined in this research can be executed remotely using these different platforms,
enhancing collaboration between stakeholders, and improving model sharing and resource use.

3. A method to model biological cells

Our method follows a 4-step process:

(1) Analysis of the structure and functions of cells to find common components, behaviors, and structures. We model aspects that
are common for all the cells, and we parameterize the model to include variable components and behaviors.

(2) The generalized structure and functions of the cell are defined using DEVS. The functions of the cells are performed by the
different components, and the behaviors are defined using atomic models. We parameterize models and use a generic model for
different types of cells.

(3) We formally define how all components are interconnected.
(4) We define a Parsing and Model Generation of Metabolic Pathways application (PMGMP), which can read an SBML file and

generate an implementation of the proposed architecture in DEVS.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

4

In the following sub-sections, we discuss each of these steps in detail.

3.1. Structure analysis

Each cell is a composite of organelles, cytoplasm, periplasm, and extracellular space. What varies from one cell to another is the
quantity and behavior of organelles (and the different reactions occurring in the different organelles), the metabolites each cell uses,
and the metabolites interchanged and used for reactions. Thus, our model architecture is adapted to include the aspects that varies
among cells. We model the common aspects, and we parameterize the behavior and the relationship structures that change. For
example, all cells have an extracellular space, and we represent it as a DEVS model. However, the reactions that occur on the
extracellular space and the metabolites available change from one cell to another. Therefore, we parameterize the extracellular space
model so it can handle different metabolites and reactions. Similarly, all cells have organelles, but the number of organelles varies from
one cell to another. The number and type of organelles in the model will be a parameter of the model architecture as we detail in step 3.
We conduct a similar analysis for all the elements in a cell.

3.2. Devs modeling

After identifying the common and variable aspects of a cell, we map the cell components and its functions (carried by specific
reactions) into DEVS models. We consider that a cell has two main types of elements: (1) those with an associated behavior such as the
organelles, the periplasm, the cytoplasm, and the extracellular space, and (2) those static, like the metabolites. The elements with
associated behavior consume metabolites to perform their functions (i.e., reactions). We model each of these elements as a parame-
terized DEVS model to capture the various behaviors. We then define the connections between these elements as a coupled model.

Fig. 1 shows the general structure of the main coupled model. The biological cell hierarchy is defined by the links between the
submodels of a cell: extracellular space, periplasm, cytoplasm, and organelles. The extracellular space only communicates with the
periplasm; the periplasm communicates with both the extracellular and the cytoplasm. Finally, the cytoplasm communicates with the
periplasm and with the organelles. We model metabolites as independent entities that move from one component to another (and in
DEVS, they are modeled as the model’s inputs/outputs).

3.3. Model structure

The top model architecture, shown in Fig. 2, represents an abstraction of a biological cell interacting with the extracellular space. It

Fig. 1. Defining a general cell and into a general DEVS model.

Fig. 2. DEVS-based structure of a cell

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

5

includes models for the extracellular space, the periplasm (which includes three sub-models representing the outer, inner and trans
membranes), the cytoplasm and multiple organelles.

Each sub-model represents a physically separated compartment, and the links between two submodels represent that those
compartments exchange metabolites. Since a compartment may have one or multiple membranes, each sub-model has one or multiple
input ports to receive metabolites through its different membranes. For example, the Periplasm model includes three membranes and
therefore it uses three input ports (one for each membrane). In that way, other models can send metabolites to the various membranes
of the periplasm by sending the metabolites to the corresponding port. The Periplasm outer membrane is connected to the port named
“O”, the inner membrane is connected to the port named “I” and the trans membrane is connected to the port named “T”. Therefore, as
in biological cells, the extracellular space only interacts with the Periplasm outer and trans membranes. Similarly, each model uses one
output port for each external membrane (membranes of other models) to which it sends metabolites.

Although the Nucleus is an important part of biological cells, not all cells have one. By explicitly modelling the Nucleus, we would
restrict which cells can fit in the proposed architecture. Therefore, the cells that have a Nucleus include a new organelle representing it.

Following, we discuss the description of each of these components in detail.

3.3.1. Periplasm
The periplasm transports metabolites from the extracellular space to the cytoplasm through different membranes. It can also

catalyze reactions in its inner membrane to transform metabolites as part of the cell metabolism. We model the periplasm as a coupled
model with four components:

• Three membrane models representing the outer, inner and trans membranes. These models are different instances of the param-
eterized enzyme sets coupled model defined below.

• An inner space model where we handle the reactions occurring within the periplasm. The Inner space is an instance of the bulk
solution coupled model defined below.

As seen in Fig. 3, inner, trans and outer membrane models connect the different compartments of the cell to exchange metabolites
through transport reactions. Reactions in the outer membrane model consume and produce metabolites from/to the extracellular space
and periplasm models. The flow of a metabolite within the periplasm model is as follows:

Fig. 3. DEVS coupled structure of the periplasm.

Fig. 4. DEVS coupled structure of the bulk solution.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

6

• Reactions within the periplasm that are not transport reactions are modelled in the inner space model.
• When inner space finds that metabolites collided with enzymes in the membrane models, it sends them back to the membranes (as is

or modified)
• The membranes receive metabolites from other compartments and generate the metabolite exchange process between other

compartments and the periplasm inner space.

Inner space is an instance of bulk solution, a parameterized coupled model shown in Fig. 4. In the periplasm, the model interacts with
its own compartment membranes. Bulk solution can represent either a compartment without membranes (e.g., extracellular space,
cytoplasm) or a sub-model of a compartment with membranes with its own inner space (e.g., periplasm, organelles). In both cases, bulk
solution only exchanges metabolites with membrane models.

Within a bulk solution model, the metabolites flow as follows:

• The space atomic model models the spatial distribution and movement of metabolites and enzymes inside a compartment. It also
has information of the enzymes of related compartments, which is a parameter of the model.

• Each time metabolites collide with enzymes, space sends the metabolites to the corresponding instance of enzyme set. This repre-
sents metabolite binding and reacting.

• Enzyme set can represent a membrane (i.e., enzymes catalyzing transport reactions) or the inner model of the bulk solution (i.e., the
enzymes catalyzing non-transport reactions).

The space atomic model computes collisions between metabolites and enzymes in the bulk solution as described in Fig. 5.
The model starts in the floating state. Using fixed-length intervals, it calculates which metabolites have collided. At the end of each

interval, the model sends each colliding metabolite to the corresponding enzyme set model. For this purpose, at the end of each interval,
the model triggers a sequence of two instantaneous internal transitions. In the first transition, the model goes to the colliding state,
where it calculates all the collisions that occurred since the last internal transition using the algorithm detailed in Appendix III. Then,
following an internal transition, it switches to sending metabolites and it sends the metabolites that have collided to the corresponding
enzyme set models though the output function. Finally, the model returns to the floating state where it will remain for the duration of the
interval time. Each time metabolites (with bound enzymes) are sent, and the space model returns to the floating state, it decrements the
number of enzymes of that type until the enzyme returns.

Each time an external event occurs, the model switches to accepting metabolites state and it increases the number of metabolites in

Fig. 5. The Space DEVSGraph.

Fig. 6. An enzyme set coupled model with the router and the enzyme atomic models.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

7

the compartment. Then, the space state is updated to consider the incoming metabolites, and they will be available in the next
scheduled internal function when collisions are calculated. The time advance of the floating state is set to the interval time only when
transitioning from the sending metabolites state. When transitioning from accepting metabolites, the time advance of floating state is set to
the interval time minus the elapsed time since the last sending metabolites state. This is because we want fixed time steps to calculate
collisions.

The enzyme set is a simple coupled model (see Fig. 6) where a set of enzyme atomic models are grouped under the same
compartment. The grouping of the enzymes allows the space models to direct the metabolite messages using a routing system like a
network protocol. Instead of sending each message to each atomic enzyme model, the routing protocol is used to only send the message
to the corresponding enzyme set. This reduces number of outgoing links in the Space model because all the atomic enzyme models are
linked to the same output ports. Enzyme models use a similar routing system to route their messages to the space models outside the
enzyme set.

As we already mentioned, an enzyme can handle multiple reactions. We need to consider the following restrictions:

• Each reaction consumes and produces different metabolites and has different rates and bounding constants.
• Reactions are not physical elements of a biological cell; they are the behavior of an enzyme when it is catalyzing a reaction.
• We used model components to only represent physical elements of a biological cell.

Each time an enzyme atomic model receives metabolites, it determines which reaction should compute. Because two reactions
cannot occur at the same time in one enzyme, the enzyme model can only execute one of its reactions at a time. The general attributes of
the enzyme atomic model are:

• Enzyme reaction: (defined for each reaction that the enzyme can handle)
○ Reaction rate: a constant that indicates how long the reaction takes.
○ Substrate stoichiometry: a set of metabolites associated with amounts that indicate the left side of the reaction stoichiometry

formula.
○ Product stoichiometry: a set of metabolites associated with the right side of the reaction stoichiometry formula.
○ KoffSTP: the Koff constant for rejecting Substrate To Product (STP) metabolites.
○ KoffPTS: the Koff constant for rejecting Product To Substrate (PTS) metabolites.
○ Reject rate: a constant that indicates the rate at which metabolites are rejected for that reaction.
• Enzyme: (not related with the enzyme reactions above)
○ Routing table: a table that indicates where we send must each rejected or produced metabolite.

The product and substrate stoichiometry attributes are instances of the formula to compute the reactions for the substrate and the
product. The enzyme atomic model uses the reactions stoichiometries to determine which reaction must be triggered based on which
stoichiometry consumes the received metabolites. Once the enzyme atomic model determines the reaction that must be handled, it will
use the attributes and state of that reaction until the reaction finishes.

If Fig. 7 we show a DEVSGraph of one enzyme within the enzyme set coupled model.
The general enzyme model state flow is as follows:

• The enzyme model starts in the state binding with the bound substrate and bound product variables of all the reactions set as false (for
all compartments that send metabolites to the enzyme).

• When a metabolite is received, the state is updated through the external transition function to determine the next state: rejecting if
incoming metabolites are rejected (Probability P(R)); reacting if all the related compartments already sent their metabolites and

Fig. 7. The DEVSGraph of one enzyme within the enzyme atomic model.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

8

incoming metabolites are not rejected (Probability (R)-1); binding if not all the related compartments have already sent their
metabolites and incoming metabolites are not rejected (Probability (R)-1). The circle in the continuous lines (external transitions)
shows the probability that the model will use that path if all conditions are satisfied. Note that the transition from binding to binding
and from binding to reacting are disjoined conditions (i.e., they cannot be satisfied at the same time).

• The enzyme atomic model can only accept incoming metabolites in the binding state. If the state is reacting or rejecting then, it will
remain in that state for the time specified by the reacting or rejecting rate attribute.

• Once the rate time is over, the reaction sends the product or rejected metabolites back to the corresponding compartments and
comes back to the binding state. The enzyme rejects the incoming metabolites with a probability based on the Koff disassociation
constant following this rule: P(X > Koff) where X ~ U(0; 1). Once the reaction starts, the reaction rate constant indicates how long
the reaction will take until the produced metabolites are ready.

• The enzyme rejects the incoming metabolites if there is a reactions conflict. This occurs when the enzyme is in binding state, but
some compartments already sent their metabolites. Then, the incoming metabolites must belong to the same reaction of the already
bound metabolites. If the incoming metabolites and the already bound metabolites are from different reaction stoichiometries, then
the metabolites are rejected.

• In some cases, an enzyme can handle reactions in both directions (substrate to product and product to substrate). When this is the
case, each direction is considered a different reaction and therefore they cannot be handled at the same time. Thus, once me-
tabolites from a compartment are bound as substrate, no product can be accepted until the reaction is over and vice versa.

3.3.2. Extracellular space and cytoplasm
The extracellular space and the cytoplasm coupled models are different instances of the parameterized bulk solution coupled model

already explained.

3.3.3. Organelle
Each organelle is modeled as a coupled model with multiple membranes that communicates with the organelle inner space and

other compartments (i.e., other organelles and the cytoplasm). Fig. 8 shows the organelle coupled model.
As shown in Fig. 8, the organelle coupled model has an inner space, an arbitrary number of membrane models (i.e., n), and an

arbitrary number of output ports (i.e., m). The inner space is an instance of the bulk solution parameterized coupled model and each
membrane is an instance of the enzyme set parameterized coupled model. Each membrane interacts with different compartments;
therefore, the output ports of a membrane model are only connected with those output ports that connect the organelle with those
specific compartments. An organelle coupled model has one input port for each membrane.

In a biological cell, organelles are placed in the cytoplasm; consequently, organelle models send and receive metabolites from/to the
cytoplasm model. In the proposed structure, an organelle can be considered as a simple cell model with its own metabolic network.
Therefore, we encapsulate the flow of metabolites; the cytoplasm and the organelles do not know what happens in any specific
organelle or in the cytoplasm.

It is worth to remark that in the architecture proposed in this research, every component can be modified, replaced, added, or even
removed. For example, if a cell has an organelle that does not fit this proposed structure, or if the modeler wants to use a macro-view
modeling approach for one or more organelles, they are able to add their model to the structure and connect that model as a new
organelle model.

3.4. Model implementation

The architecture was implemented in the Parser and Model Generation of Metabolic Pathways (PMGMP) tool, which manages SBML
files and use their information to automatically instantiate and generate DEVS models implemented in Cadmium. Likewise, each time a
new model is generated, PMGMP generates a JSON model.

Fig. 8. The general organelle coupled model with multiple membranes and the inner space.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

9

3.4.1. Parsing SBML files
First, we use the ListOfCompartmentTypes attribute in the SBML files along with their type to obtain the coupled model structure

information (Extracellular, Periplasm, Cytoplasm and Organelle). To instantiate each component, we need to know which reactions
occur in each compartment; this is defined in the ListOfReactions element in the SBML files. From this element, we get the reaction id, if
it reversible or not, the stichometry and the main properties such as KonSTP, KonTPS, KoffSTP, KoffSTP, reaction rate, and rejection rate. We
also need to know which enzymes catalyze each reaction, and in which compartment each of the enzymes is. SBML specifications do
not consider enzymes: they are specified in the reactions using logical expressions to denote the enzymes’ name. To know to which
compartments each enzyme belongs, we could use the compartment where the reactions happen. However, in SBML all the reactions
are listed in the ListOfReaction attribute without being separated by compartments. We need to deduct that information from the
reaction stoichiometry in the SBML structure. In SBML, species are compartment-specific elements. Therefore, if a metabolite can be
found in multiple compartments, the metabolite must be declared multiple time using different species IDs for each compartment. This
is normally done by adding the compartment name as suffix. Additionally, the stoichiometry of the reactions determines the species a
reaction consumes and produces. With this information we can deduct where the reaction occurs.

The information retrieved from the SBML file is stored in a data structure called parser data, shown in Fig. 9. The white arrow
indicates that the product and reactant have the same structure (i.e., metabolite by compartment). As a reaction is handled by multiple
enzymes and an enzyme can handle multiple reactions, this is represented in the diagram with an asterisk. We use the values stored in
the reaction parameter structure to create instances of the enzyme atomic models. If when we attempt to create a model of an enzyme,
the model already exists, we add the reaction to the list of reactions of that the existing enzyme atomic model can handle.

3.4.2. Model generation
Fig. 10 shows a diagram of the top-down recursive strategy to generate the models (i.e., the compartments of the cell) as a rooted

tree graph where the root is the top model generation process, and each level defines the process recursive hierarchy. Each line link in
the figure represents a recursive call to a function that generates a sub-model.

The data needed to define each compartment (i.e., DEVS model) is retrieved from the data structure presented in Fig. 9. A new data
structure call ModelStructure is created for each atomic component with the following attributes: the compartment model id; the enzyme
sets within the same membrane or the compartment inner enzyme set; a routing table that determines how metabolites are sent to the
enzymes; the membrane external input coupling between the membranes and the model input ports (if there is no membrane the input
ports are all directed to the compartment space model); and the space parameters. The space parameters include the compartment id, the
interval time (model time step; it is not specified in the SBML file and must be provided by the modeler), metabolites (the compartment
species list) and enzymes (all the enzymes where the compartment send and/or receive metabolites from).

We use the ModelStructure class to generate the DEVS model as shown in Fig. 10. It is a top-down process that starts creating the top
cell coupled model and continues constructing the sub-components recursively until the bottom elements are built. Once all sub-
components are ready, the cell top model is finished.

The cell top model is composed by the extracellular, periplasm, cytoplasm and organelles models as well as their connections.

3.4.3. Model parameter extraction
The final step is to write the parameters of the model in an external file (in this case, an XML file) to define initial conditions of the

simulation to obtain different scenarios without the need for regenerating and compiling the model. The XML schema for the pa-
rameters of the model is shown in Appendix IV. All the model parameters are defined using three main lists: spaces, reactions, and
routers.

Space represents all the parameters for atomic models of type space, and it has a list with all the compartments. Each compartment
has a model id, an interval time, a list of metabolites, a rooting table that which output port must be used to send metabolites to an

Fig. 9. UML diagram of the parser data structure obtained from the SBML file.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

10

enzyme, and a list of enzymes. Each enzyme represents the all the parameters for atomic models of type enzyme. An enzyme is basically a
list of handled reactions.

All the reactions are stored in a list of reactions. Each reaction element has an id, a reaction rate, the Ko constant for the STP
direction, the Ko constant for the PTS direction, a routing table that indicates which port must be used to send each metabolite to its
corresponding space atomic model, and the stoichiometry.

Router represents all the parameters for the atomic models of type router. A router element has an id attribute to identify the model
and a routing table element. Each child of the routing table element is an entry element that specifies, for each enzyme id (eid attribute)
the port where the message must be routed to reach the enzyme (port attribute).

If we want to run new simulations with different parameters, we call the compiled Cadmium model with the path to the XML file.
The constructor of the atomic model classes, which take as input parameter the path to the XML file, uses the field of called cid (i.e., the
compartment if) to find the parameters within the XML file.

The complete model generator process implemented in Parsing and Model Generation of Metabolic Pathways (PMGMP) is summarized
in Fig. 11. First, the SBMLParser, ModelCodeWriter and XMLParameterGenerator components are initialized. Then, we initialize the
ModelStructures, where the atomic components are defined, using the top-down strategy in Fig. 10. Each time an atomic model is
defined, its parameters are added to the XML structure. Once the entire model is built, ModelCodeWriter and XMLParameterGenerator

Fig. 10. The Top-down model generation process structure.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

11

close their files and the model is ready to be compiled.

4. Modeling and simulating metabolic pathways

In this section we show how to apply our method and tools to build models and run simulations of metabolic pathway. The
implementation and the data to replicate these case studies are publicly available in https://github.com/SimulationEverywhere/
PMGBP-PDEVS.

4.1. Synthetic model

We defined a synthetic model in SBML that defines a theoretical cell with one enzyme (called b0000) that catalyzes all the cell
reactions. In each compartment (periplasm and cytoplasm) there are multiple b0000 enzymes. The model only considers reactions that
are catalyzed by the b0000 enzymes. To do so, we defined the following reactions under the <reactions> tag:

• A to 2A in cytoplasm: this reaction occurs in the cytoplasm. It consumes one metabolite (A_c) and produces two metabolites (A_c).
• B to 2B in extracellular space: this reaction occurs in the extracellular space. It consumes one metabolite (B_e) and produces two

metabolites (B_e).
• C and C to 2C and 3C in periplasm inner: it occurs in the periplasm inner membrane, and it consumes one metabolite (C_c) from

the cytoplasm and one from the periplasm (C_p). It produces two metabolites (C_c) in the cytoplasm and three in the periplasm
(C_p).

• D and D to 2D 3D in periplasm outer: it occurs in the periplasm outer membrane, and it consumes one metabolite (D_e) from the
extracellular space and one (D_p) from the periplasm. It produces two metabolites (D_e) in the extracellular space and three (D_p) in
the periplasm.

• E, E and E to 2E, 3E and 4E in periplasm trans: it occurs in the trans-membrane, consuming one metabolite (E_e) from the
extracellular space, one (E_c) from the cytoplasm, and one (E_p) from the periplasm. It produces two metabolites (E_e) in the
extracellular space, three (E_c) in the cytoplasm, and four (E_p) in the periplasm.

• No product in periplasm: This reaction occurs in the periplasm. It consumes one metabolite (F_p) and does not produce anything.
• No substrate from related compartment in periplasm outer: this transport reaction occurs in the periplasm outer membrane. It

transports a metabolite (G_e) from the extracellular space to the periplasm, obtaining a metabolite (G_p) in the periplasm.

Once the SBML file is defined, the PMGMP application generates atomic models in Cadmium parameterized using the parameters in
the SBML file. These models are automatically built based on the parameters provided. We first generate a parameterized coupled
model in Cadmium (ready to compile without any changes). We can also use different external parameters without recompiling the
model to test the effect of different parameters. In this case, we use an external parameter to define 1,000 enzymes b0000 in each
enzyme set and 600,000 metabolites of each type (A to G). Because each reaction uses different metabolites, all the metabolic pathways
are composed by one reaction. We also set the volume of each compartment to be equal to the estimated volume of the E. Coli bacteria
(0.528 cubic micrometers for the cytoplasm, and 0.072 cubic micrometers for the periplasm and extracellular space). We set the Kon

Fig. 11. The recursive model generation flow

C. Ruiz-Martin et al.

https://github.com/SimulationEverywhere/PMGBP-PDEVS
https://github.com/SimulationEverywhere/PMGBP-PDEVS

Simulation Modelling Practice and Theory 114 (2022) 102419

12

Fig. 12. Number of metabolites for the different reactions occurring in the synthetic model. (a) amount of metabolites A_c in time; (b) metabolites B_e; (c)
metabolites C_p and C_c; (d) metabolites D_p and D_e (e) metabolites E_p, E_c and E_e (f) metabolites F_p and (g) metabolites G_p, and G_e.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

13

and Koff constants equal to 0.8 for all the reactions to increase the probability of binding metabolites and decrease the probability of
rejecting bound metabolites. Finally, we set the enzymes reacting, ejecting and the spaces intervals of time in one millisecond, which is
an arbitrary value for our synthetic model, but it does not affect the results as all the reactions are independent of each other. The rest of
the parameters are not modified. Fig. 12 shows the simulation results of the metabolic pathways from the proposed synthetic model.

From the simulation results we can extract the following conclusions:

• All the metabolites that increased by one in a reaction have a similar linear curve with a mean final number of 2,500,000 me-
tabolites: metabolites A_c, B_e, C_c, D_e, and E_e.

• All the metabolites that increased by two in a reaction have a similar linear curve with a mean final number of 4,500,000 me-
tabolites, which is more than the metabolites produces by reactions that increased the number by one. These are E_c, D_p, and C_p.

• The metabolite E_p, which is produced by a reaction that increased by three the number of metabolites, has a similar linear curve
with a mean final number of 7,000,000 metabolites. This is almost 3 times the value obtained by a reaction that increases the
metabolites by one.

• The metabolite F_p decreases until there are none left. As shown in the figure, the decreasing curve is not linear because each time a
“No product in periplasm” reaction occurs, the number of metabolites F_p decreases, and therefore, the probability of binding also
decreases, making the reaction flow rate slower.

• The metabolite G_e decreases at the same rate than the metabolite G_p increases, which is consistent with the transport reaction. In
this case, we see the same effect shown as with metabolite F_p: the reaction flow rate is not linear as the amount of metabolite G_e
decreases because the probability of getting the reaction also decreases.

4.2. Modeling E. COLI

In this section, we present a case study where we build a model for the E. Coli bacteria. We use an SBML model available in https://
github.com/SimulationEverywhere/PMGBP-PDEVS/blob/master/msb201165-sup-0003.xml, which provides the cell structure, en-
zymes and reactions involved in the E. Coli metabolic pathways. However, this model does not have information about the Kon and Koff
constants or the reaction and reject rates (as the objective of this research is to show how to build these models with the proposed
method and obtaining the real values of these parameters is out of the scope, we cannot compare the results with in-vitro or in-situ
results. The advantage of our approach is that once these values become available, we just need to update those values in the XML
parameter file and re-run the simulation and the analysis).

For the analysis presented in this section, after the parameterized coupled model and the XML file with the model parameters were
generated using PMGMP, we updated the XML with the following parameters: Kon = 0.8 for all the reactions; Koff = 0.8 for all the
reactions; reaction time = 1 millisecond for all the reactions; reject time = 1 millisecond for all the reactions; space interval of time = 1
millisecond for all the compartments; initial enzyme amount = 1,000 for all the enzymes; initial metabolite amount = 600,000 for all

Fig. 13. Number of metabolites in the FE3DHBZStonex transport reaction for E. Coli bacteria

Table. 1
Metabolite productions and consumption rates in the entire E. Coli bacteria.

Metabolite Total production Total consumption Final production rate
M_fe3dhbzs_e 0 2 -2
M_fe3dhbzs_p 1 1 0
M_h_p 130 232 -102
M_h_c 920 353 567

C. Ruiz-Martin et al.

https://github.com/SimulationEverywhere/PMGBP-PDEVS/blob/master/msb201165-sup-0003.xml
https://github.com/SimulationEverywhere/PMGBP-PDEVS/blob/master/msb201165-sup-0003.xml

Simulation Modelling Practice and Theory 114 (2022) 102419

14

the metabolites. During the simulation, 2581 types of reactions were handled by 1577 types of enzymes consuming and producing a
total of 1805 types of metabolites. Here we analyze a reaction and their metabolites as example. We have chosen the reaction
R_FE3DHBZStonex. This is a transport reaction located in the periplasm trans-membrane of the E. Coli cell. The reaction
R_FE3DHBZStonex has the following stoichiometry:

M_h_p +M_fe3dhbzs_e → M_h_c +M_fe3dhbzs_p
This reaction transports metabolite h from the periplasm (M_h_p) to the cytoplasm (M_h_c), and metabolite fe3dhbzs from the

extracellular space (M_fe3dhbzs_e) to the periplasm (M_fe3dhbzs_p).
Fig. 13 shows the result of the metabolites handled by this reaction.
As shown in Fig. 13, the substrate metabolites M_h_p and M_fe3dhbzs_e decrease, but the product metabolites M_h_c and

M_fe3dhbzs_p do not always increase. An interesting result is that the metabolite M_h_c (metabolite h in the cytoplasm) has a rapid
increasing rate until the virtual time 00:00:01:811. Then it starts decreasing at almost the same rate. Metabolite M_fe3dhbzs_p remains
almost constant.

To understand this phenomenon and considering we have used the same parameters for all the reactions, we studied the total
production and consumption rates of these metabolites in the entire bacteria. Table 1 shows for each metabolite the total production
rate considering all the reactions that produce that metabolite and the total consumption rate considering all the reactions that
consume that metabolite. The final production rate is the difference between the production and the consumption rates. If a metabolite
has a higher consumption than production rate, the metabolite tends to decrease its number over the time, while a metabolite with a
higher production than consumption rate tends to increase its number over the time.

M_h_p has a significant negative final production rate. This result matches what we can see in Fig. 13. The metabolite is almost
completely consumed in the first milliseconds. M_fe3dhbzs_e has a final production rate of -2, which is consistent with the simulation
results where it decreases slower than the M_h_p metabolite. The metabolite M_fe3dhbzs_p has a final production rate of 0 and as shown
in the simulation result it remains almost constant over the time. M_h_c has a final production rate of 567 which is consistent with the
first 1.811 simulation virtual seconds, but it is contradictory with the remaining simulation virtual time.

If we look at substrate of all the reactions producing the metabolite M_h_c, and we analyze the mean of the final production rate of
these metabolites, we have that the rate is approximately -0.037. This result shows that, in general, the metabolites needed to produce
M_h_c tend to decrease. If look at how M_h_c is consumed (i.e., the substrate of all the reactions consuming the metabolite M_h_c), and
we analyze the mean of their final production rate, we have that the rate is approximately 0.7889. This means that the metabolites
needed to consume M_h_c tend to increase. When the simulation starts, we have enough metabolites, and the final production rate of
the metabolite M_h_c is the one shown in table 1. However, with time, the remaining metabolites needed to produce M_h_c decrease,
and the metabolites needed to consume M_h_c increase. Therefore, M_h_c decreases. This explains the original unexpected result
where, the metabolite M_h_c decreases even though its final production rate is high.

5. Conclusions

We introduced a flexible structure for modeling reactions occurring in biological cells. This structure was implemented using
parameterized DEVS models. This framework can be improved and adapted for different projects, allowing to integrate new models
when needed. The proposed structure considers general aspect of cells, allowing the user to modify the components.

To automate the generation of models, the PMGMP software takes a biological model defined in SBML and uses it to generates a
DEVS model reading to compile. It also generates an XML file with the model parameters. The user can modify this file to run different
simulation scenarios without re-compiling the model. Additionally, most users can use the application if they have a biological model
defined in SBML available.

We introduced two case studies: a simple synthetic model and a real model of the E. Coli. The reactions in the synthetic model are
stochastic processes. Therefore, even for those metabolites with the same parameters in their corresponding reactions, there are some
differences in the curves. However, because we set a considerable number of enzymes, the probability reaches values close to the mean
and we obtain almost linear curves without considerable deviations. As future work, instead of calculating the binding probability
individually for each enzyme, we could consider a general formula that calculates the final total number of enzymes that bound
metabolites. This would be a major improvement in the simulation time complexity from linear to almost constant.

Acknowledgements

This Research has been partially funded by NSERC. The complete research materials used as source for the article can be found in
[45]

Appendix I. SBML representation of models

SBML is a generic specification language to store information of different biological phenomena. The SBML general structure is
presented in Fig. A1.

SBML models use a simple hierarchy contained under the Model tag as shown in Fig. A1 (where black diamond arrows indicate
element relations with their cardinality; * means that cardinality can be zero, one or multiple elements; each element name is delimited
by <> to specify they are XML tag elements). In the first level, there can be different lists of elements: such as compartments, species,
and reactions. In the second level, each list stores several single elements. For example, ListOfReactions holds multiple instances of

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

15

Reaction elements. Every element has a sub-structure to store its information. Additionally, an element can have a “note” attribute
where we can store any valid HTML structure to include any information that does not fit into the SBML specification structure (e.g., a
list of parameters, which are not usually included in macro view models).

ListOfCompartmentTypes is used to define the compartment types present: Extracellular space, Periplasm, Cytoplasm and Organelle
can be declared in this list. Then, ListOfCompartments is used to specify the different compartments present in a cell. For example, we
may have a compartment called Vacuole that is of type Organelle. The properties of the reactions occurring within a cell are defined in
Reaction elements within the tag ListOfReaction. The structure of the reaction element is shown in Fig. A2. Among other elements, a
reaction includes an id, if the reaction is reversible or not, and if it is a fast reaction. Similarly, it references to the list of species in the
reaction, which are defined under the tag ListOfSpecies.

Each Species element in ListOfSpecies includes various attributes that include:

• Id: an identification that allows us to differentiate each metabolite (species) in the model
• Name: it allows us to show the biological name of each metabolite.
• Compartment: it holds the compartment ID where the species belongs.
• Initial Amount: Specifies the total number of metabolites of that species existing at the initial time.

The reaction stoichiometry is a quantitative relationship between reactants and products. It is defined using listOfReactants and
listOfProducts, which are lists of species belonging to the stoichiometry. Each species within these lists has a stoichiometry attribute (a
number showing the amount of that species contained in the stoichiometry). The remaining properties, such as the reaction rate, are
defined in the ListOfParameters.

Enzymes that catalyze the different reactions are an important aspect in biological models. However, the SBML specification
structure does not consider enzymes. Enzymes are specified in the reactions using logical expressions to denote the enzymes’ name. To
know to which compartments each enzyme belongs, we could use the compartment where the reaction happens. Nevertheless, in SBML
all the reactions are listed in the ListOfReaction without being separated by compartments.

Appendix II. DEVS models formal specification

DEVS Atomic models are used define the behavior of the system. The formal definition of an atomic model is as follows:
AM = 〈X,Y,S, ta,δext , δint, δcon, λ〉

Fig. A1. Structure of general structure of an SBML v2.5 file

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

16

Where:
X is the set of input events.
Y is the set of output events.
S is the set of sequential states.
ta : S → R+

0 ∪ ∞ is the time advance function that determines the time until the next internal transition.
δext : QxXb → S is the external transition function that determines the next state when external events arrive, where Q = {(s, e)s ∈

S, 0 ≤ e ≤ ta(s)} }, e is the elapsed time since the last state transition and Xb is a set of bags over elements in X.
δint : S → S is the internal transition function that determines the state transition of the model when the state duration is over, and

no external event has arrived.
δcon : QxXb → S is the confluence transition function that determines the next state when and external events arrive at the same

time than an internal transition is triggered.
λ : S → Yb ∪ ∅ is the output function that determines the output of the model based on its current state. Yb is a set of bags over

elements in Y and ∅ is the empty set.
Coupled models are defined connecting multiple DEVS models (coupled or atomic) linking the models’ inputs and outputs. A

coupled model is defined as the next 7-tuple:
CM = 〈X,Y,D,{Mdd ∈ D}, EIC,EOC, IC〉
Where:
X : Is the set of input events.
Y : Is the set of output events.
D : Is the set of the names of the sub-components.
{Md} : Is the set of sub-components where d ∈ D. Each Md is a DEVS model (either atomic or coupled)
EIC: is the set of external input couplings
EOC: is the set of external output couplings
IC: is the set of internal couplings

Appendix III. – Algorithm to calculate collisions between enzymes and metabolites in the space atomic model

To understand the logic of the algorithm used in the Space atomic model to calculate collisions between enzymes and metabolites,
we will first explain the biological binding mechanism that we modelled.

There are multiple binding mechanisms; one of the most common (which we used here) is as follows. Enzymes and metabolites are
in the bulk solution, and when a metabolite is near an enzyme, they can collide. When a metabolite collides with an enzyme there is a
chance that the metabolite will bind with the enzyme. The probability of this event is not independent of the current enzyme state:
every time an enzyme binds to a new metabolite, the chances to bind to new ones increase exponentially.

To model this binding mechanism, we consider that once an enzyme binds to the first metabolite, the probability to bound the
remaining needed metabolites is close to one (because it increases exponentially). Therefore, once an enzyme binds the first

Fig. A2. Structure of the reaction element in an SBML Model

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

17

metabolite, we can assume that it will bound all the remaining metabolites it needs to react. Thus, we use a binary probability function
where the enzyme binds all the metabolites it needs to react to, or it does not bind any metabolite at all.

Some enzymes consume metabolites from different compartments (i.e., different Space atomic models). In this case, the binding
process is independent for all the compartments and each Space model will calculate the binding process without knowing the state of
other compartments.

To calculate the binding probability, we use the following spatial stochastic formula that considers the space volume to calculate
the metabolite concentrations [Ai]:

[Ai] =
|Ai|

L ∗ compartment volume

Where
L is the Avogadro constant used to deal with the fact that concentrations are calculated in moles unit and in our micro-view model

we have the metabolites in metabolite amount units.
Multiple enzymes can bind metabolites of the same type. Then, if an enzyme binds a metabolite, the concentrations of that

metabolite type decrease. To model this, we use a uniform random distribution to determine in which order the enzymes will bind the
metabolites. Each time an enzyme binds some metabolites, the free metabolites amount is updated |Ai|, and the concentrations
decrease for the remaining free enzymes.

Similarly, an enzyme can handle multiple reactions depending on which metabolites the enzyme bounds. To model this, we use a
two-step process where we first calculate the partial probability of the enzyme to bind the metabolites of each reaction that it handles
using the following formula:

Then, we integrate all the partial probabilities and determine which metabolites will bind the enzyme using the following formula:

As Pbind(ri) is within the interval [0, 1], we normalize the single probabilities to fit in the interval when the sum of all the single
probabilities is greater than 1.

The formula to calculate Pbind(ri) splits the interval [0, 1] into n+1 disjoint subintervals. Each interval represents a different re-
action handled by the enzyme. The duration of each interval is determined by Ppartial binding (reaction; kon) according to the concen-
tration (in the compartment) of the metabolites involved in the reaction. Once the interval [0, 1] is divided, we use a uniform random

Algorithm 1
Calculates the enyzme and metabolites collisions.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

18

variable to choose one of the sub-intervals. Finally, the enzyme binds the metabolites of the reaction represented by the chosen in-
terval. The last interval (the number n + 1) represents a case where the enzyme does not bind any metabolite.

The length of the last interval (the interval n + 1) is not obtained by Ppartial binding (reaction; kon); instead, it is the remaining space
once the first n intervals are calculated.

This collision process is summarized in Algorithm 1.

Appendix IV. XML schema for the parameters of the model

The Fig. A3 represents the UML diagram of the XML parameters file.

Fig. A3. UML diagram representation of the parameters in the XML file.

C. Ruiz-Martin et al.

Simulation Modelling Practice and Theory 114 (2022) 102419

19

The root element is parameters. This element contains 3 main lists: spaces, reactions, and routers.
Space represents all the parameters for atomic models of type space. Space has a list with all the compartments. Each compartment

has the following elements:

• cid: model ID used by each model to find its corresponding parameters.
• interval time: fixed-length interval time steps used by space atomic models. This attribute is a string to define time with the format

“hours:minutes:seconds:milliseconds”.
• metabolites: list containing the information of the metabolites that belong to the compartment. Each metabolite information is

specified in a metabolite element within this list and has the following attributes:
○ id: identifies the metabolite across the models. When a metabolite is sent from one model to another, the id is sent to identify it.
○ amount: is an integer attribute that defines the initial amount of metabolite available in the compartment.

• routing table: specifies for each pair of compartment ID and enzyme set ID, which output port must be used to send metabolites to an
enzyme. Each entry element has the following attributes:
○ cid: id of the compartment where the enzyme set is located.
○ esn: id of the enzyme set.
○ port: number of the port that must be used to reach the enzyme set.

• enzyme contains the information of the enzymes that are related to the compartment. Each enzyme information is specified in an
enzyme element within this list and has the following attributes and children:
○ eid: identifies the enzyme across the models.
○ amount: is an integer attribute that defines the initial number of free enzymes (i.e., an enzyme without any metabolite bound) in

the compartment.
○ address: It is a child element containing the compartment and enzyme set IDs where the enzyme belongs.
○ handled reactions: it is a child element organized as a list with the information of all the reactions handled by the enzyme. For each

reaction, it includes a reaction element with the following attributes and children:
▪ rid: id of the reaction.
▪ KonSTP: Kon constant for the Substrate to Product direction.
▪ KonPTS: Kon constant for the Product to Substrate direction.
▪ reversible: Boolean indicating if the reaction is reversible or not.
▪ stoichiometry: A child element that has two lists of species (Product and Substrate) that specifies each one of the species id

and amount that belongs to the reaction stoichiometry.

Enzyme represents the all the parameters for atomic models of type Enzyme. Enzyme is basically a list of handled reactions. Thus, to
instantiate an enzyme atomic model we need all the parameter of the enzyme handled reactions. Each reaction information is con-
tained in a reaction element within the list reactions. It has the following attributes and children elements:

• id: reaction id.
• rate: time that takes the reaction to convert the consumed metabolites to the produced metabolites.
• Ko_STP: Ko constant for the Substrate to Product direction.
• Ko_PTS: ko constant for the Product to Substrate direction.
• routing table: list containing routing table entries that indicates which port must be used to send each metabolite to its corre-

sponding space atomic model. Each entry has a mid (metabolite id) and a port number.
• stoichiometryByCompartment: list of stoichiometry divided by compartments as we already explained. As we can see in Fig. A3, this

list has a child for each compartment, and each compartment has one child where the reaction stoichiometry related to that
compartment is specified.

Router represents all the parameters for the atomic models of type router. All the parameters of a router atomic model are con-
tained in a router element within the routers list element. A router element has an id attribute to identify the model and a routing table
element. Each child of the routing table element is an entry element that specifies, for each enzyme id (eid attribute) the port where the
message must be routed to reach the enzyme (port attribute).

References

[1] S. Klamt, J. Stelling, Combinatorial Complexity of Pathway Analysis in Metabolic Networks, Molecular Biology Reports 29 (1-2) (2002) 233–236.
[2] A.M. Uhrmacher, D. Degenring, B. Zeigler, Discrete Event Multi-Level Models for Systems Biology, Transactions on computational systems biology I (2005)

66–89.
[3] R. Ewald, J. Himmelspach, M. Jeschke, S. Leye, A.M. Uhrmacher, Flexible Experimentation in the Modeling and Simulation Framework JAMES II. Implications

for Computational Systems Biology, Briefings in bioinformatics 11 (3) (2010) 290–300.
[4] W.B. Copeland, B.A. Bartley, D. Chandran, M. Galdzicki, K.H. Kim, S.C. Sleight, C.D. Maranas, H.M. Sauro, Computational Tools for Metabolic Engineering,

Metabolic engineering 14 (3) (2012) 270–280.

C. Ruiz-Martin et al.

http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0001
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0002
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0002
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0003
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0003
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0004
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0004

Simulation Modelling Practice and Theory 114 (2022) 102419

20

[5] J.R. Karr, J.C. Sanghvi, D.N. Macklin, M.V. Gutschow, J.M. Jacobs, B. Bolival Jr, N. Assad-Garcia, J.I. Glass, M.W. Covert, A Whole-cell Computational Model
Predicts Phenotype from Genotype, Cell 150 (2) (2012) 389–401.

[6] SBML Team, (2010) “The History of SBML”, http://sbml.org/History_of_SBML (Last Access: 21/05/2021).
[7] M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden, et al., The Systems Biology Markup

Language (SBML): a Medium for Representation and Exchange of Biochemical Network Models, Bioinformatics 19 (4) (2003) 524–531.
[8] A. Bauer-Mehren, L.I. Furlong, F. Sanz, Pathway Databases and Tools for their Exploitation: Benefits, Current Limitations and Challenges, Molecular systems

biology 5 (1) (2009) 290.
[9] Z. Wang, Cell Biology Simulation using DEVS Combined with SBML, Department of Electrical and Computer Engineering, The University of Arizona, 2009.

Master of Science.
[10] B.P. Zeigler, T.G. Kim, H. Prähofer, Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd ed.,

Academic Press, San Diego, California, 2000.
[11] S.M. Ruggiero, A.N. Ford Versyp, SBMLtoODEpy: A Software Program for Converting SBML Models into ODE Models in Python, Journal of Open-Source

Software 4 (41) (2019) 1643.
[12] L. Belloli, G. Wainer, R. Najmanovich, Parsing and Model Generation for Biological Processes, in: 2016 Symposium on Theory of Modeling and Simulation (TMS-

DEVS), SpringSim 2016, Pasadena, Ca, USA, 2016.
[13] G. Wainer, R. Djafarzadeh, DEVS Modelling and Simulation of the Cellular Metabolism by Mitochondria, Molecular Simulation 36 (12) (2010) 907–928.
[14] H.-G. Holzhutter, G. Jacobascj, A. Bisdorff, Mathematical Modelling of Metabolic Pathways Affected by an Enzyme Deficiency: A Mathematical Model of

Glycolysis in Normal and Pyruvate-Kinase-Deficient Red Blood Cells, European journal of biochemistry 149 (1) (1985) 101–111.
[15] A.M. Uhrmacher, R. Ewald, M. John, C. Maus, M. Jeschke, S. Biermann, Combining Micro and Macro-Modeling in DEVS for Computational Biology, in: Winter

Simulation Conference, Washington, DC, USA, 2007.
[16] V.S. Ayyadurai, C.F. Dewey, Cytosolve: a Scalable Computational Method for Dynamic Integration of Multiple Molecular Pathway Models, Cellular and

Molecular Bioengineering 4 (1) (2011) 28–45.
[17] H.M. Sauro, D. Harel, M. Kwiatkowska, C.A. Shafer, A.M. Uhrmacher, M. Hucka, P. Mendes, L. Stromback, J.J. Tyson, Challenges for Modeling and Simulation

Methods in Systems Biology, in: Winter Simulation Conference, Monterrey, CA, USA, 2006.
[18] C. Maus, M. John, M. Röhl, A.M. Uhrmacher, Hierarchical Modeling for Computational Biology”. Formal Methods for Computational Systems Biology, in: SFM

2008. Lecture Notes in Computer Science, 5016, Springer, Berlin, Heidelberg, 2008.
[19] B.J. Bornstein, S.M. Keating, A. Jouraku, M. Hucka, LibSBML: an API Library for SBML, Bioinformatics 24 (6) (2008) 880–881.
[20] F Maggioli, T Mancini, E Tronci, SBML2Modelica: Integrating Biochemical Models within Open-Standard Simulation Ecosystem, Bioinformatics 36 (7) (2020)

2165–2172.
[21] T.-S. Jung, K.-R. Kim, S.-H. Jung, T.-K. Kim, M.-S. Ahn, J.-H. Lee, W.-S. Cho, in: SPDBS: An SBML-Based Biochemical Pathway Database System”, International

Conference on Intelligent Computing, Kunming, Yunnan, China, 2006.
[22] J. Scott-Brown, A. Papachristodoulou, SBML-diff: A Tool for Visually Comparing SBML Models in Synthetic Biology, ACS Synthetic Biology 6 (7) (2017)

1225–1229.
[23] L. Watanabe, J. Barhak, C. Myers, Toward Reproducible Disease Models using the Systems Biology Markup Language, Simulation 95 (10) (2019) 895–930.
[24] SBML (2019) The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core. Release 2. Available online: http://sbml.org/

Special/specifications/sbml-level-3/version-2/core/release-2/sbml-level-3-version-2-release-2-core.pdf (Last Access: 21/05/2021).
[25] Y. Van Tendeloo, H. Vangheluwe, An Evaluation of DEVS Simulation Tools, Simulation 93 (2) (2017) 103–121.
[26] J. Nutaro (2014). A Discrete EVent system Simulator. Available: http://web.ornl.gov/~1qn/adevs/adevs-docs/manual.pdf. (Last Access: 21/05/2021).
[27] Y. Van Tendeloo, H. Vangheluwe, in: The Modular Architecture of the Python (P)DEVS Simulation Kernel” Symposium on Theory of Modeling & Simulation,

Tampa, FL, 2014.
[28] G. Quesnel, R. Duboz, E. Ramat, M.K. Traore, VLE: a Multimodeling and Simulation Environment, in: Summer Computer Simulation Conference, San Diego, CA,

2007.
[29] G. Wainer, Discrete-Event Modeling and Simulation: A Practitioner’s Approach, CRC Press, Boca Raton, FL, USA, 2009.
[30] G. Wainer, Advanced Cell-DEVS Modeling Applications, SIMULATION: Transactions of the SCS. (2018), https://doi.org/10.1177/0037549718761596.
[31] MS4 Me user guide Available Online: www.ms4system.com. (Last Access: 21/05/2021).
[32] K. Sungung, H. Sarjoughian, Vignesh Elamvazhuthi, DEVS-Suite: a Simulator Supporting Visual Experimentation Design and Behavior Monitoring, in: Spring

Simulation Conference, San Diego, CA, USA, 2009.
[33] L. Belloli, D. Vicino, C. Ruiz-Martin, G. Wainer, Building Devs Models with the Cadmium Tool, in: Winter Simulation Conference, National Harbor, MD, USA,

2019.
[34] D. Heredia, V. Sanz, A. Urquia, M. Sandin, A Systemic Approach for Modeling Biological Evolution using Parallel DEVS, Biosystems 134 (2015) 56–70.
[35] N. Akhtar, N. Niazi, F. Mustafa, A. Hussain, A Discrete Event System Specification (DEVS)-based Model of Consanguinity, Journal of Theoretical Biolology 285

(1) (2011) 103–112.
[36] G. Wainer, R. Djafarzadeh, DEVS Modelling and Simulation of the Cellular Metabolism by Mitochondria, Molecular Simulation 36 (12) (2010) 907–928.
[37] Z. Wang, Cell Biology Simulation using DEVS Combined with SBML, Department of Electrical and Computer Engineering, The University of Arizona, 2009.

Master of Science.
[38] G Wainer, K Al-Zoubi, R. Madhoun, Distributed Simulation of DEVS and Cell-DEVS Models in CD+ + using Web-Services, Simulation Modelling Practice and

Theory 16 (9) (2008) 1266–1292.
[39] K. Al-Zoubi, G. Wainer, RISE: A General Simulation Interoperability Middleware Container, Journal of. Parallel and Distributed Computing. 73 (5) (2013)

580–594.
[40] G. Wainer, S. Wang, MAMS: Mashup Architecture with Modeling and Simulation as a Service, Journal of Computer Science 21 (2017) 113–131.
[41] NATO, (2013), “Allied Framework for Modelling and Simulation as a Service (MSaaS)” https://nmsg.sto.nato.int/themes/msaas. (Last Access: 27/09/2021).
[42] W. Kenneth (2013). “SaaS Redefined: Simulation as a Service (or) Cloud-Hosted Simulation” https://www.digitalengineering247.com/article/saas-redefined-

simulation-as-a-service-or-cloud-hosted-simulation/ (Last Access: 27/09/2021).
[43] R. Barwell, G. Wainer, Strategic Airlift Operationalizing Constructive Simulations, in: SCS/ACM/IEEE Annual Simulation Symposium (ANSS), ANNSIM’21

Fairfax, VA, 2020.
[44] K Al-Zoubi, G Wainer, Fog and Cloud Collaboration to Perform Virtual Simulation Experiments, Simulation Modelling Practice and Theory 101 (2020), https://

doi.org/10.1016/j.simpat.2019.102032.
[45] L. Belloli, Biological Modeling and Simulation as a Service, Facultad de Ciencias Exactas y Naturales, Departamento de Computacion, Universidad de Buenos

Aires, 2019. Master of Science Equivalent.

C. Ruiz-Martin et al.

http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0005
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0005
http://sbml.org/History_of_SBML
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0007
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0007
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0008
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0008
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0009
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0009
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0010
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0010
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0011
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0011
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0012
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0012
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0013
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0014
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0014
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0015
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0015
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0016
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0016
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0017
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0017
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0018
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0018
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0019
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0020
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0020
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0021
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0021
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0022
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0022
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0023
http://sbml.org/Special/specifications/sbml-level-3/version-2/core/release-2/sbml-level-3-version-2-release-2-core.pdf
http://sbml.org/Special/specifications/sbml-level-3/version-2/core/release-2/sbml-level-3-version-2-release-2-core.pdf
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0025
http://web.ornl.gov/~1qn/adevs/adevs-docs/manual.pdf
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0027
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0027
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0028
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0028
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0029
https://doi.org/10.1177/0037549718761596
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0032
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0032
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0033
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0033
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0034
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0035
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0035
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0036
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0037
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0037
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0038
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0038
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0039
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0039
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0040
https://nmsg.sto.nato.int/themes/msaas
https://www.digitalengineering247.com/article/saas-redefined-simulation-as-a-service-or-cloud-hosted-simulation/
https://www.digitalengineering247.com/article/saas-redefined-simulation-as-a-service-or-cloud-hosted-simulation/
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0043
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0043
https://doi.org/10.1016/j.simpat.2019.102032
https://doi.org/10.1016/j.simpat.2019.102032
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0045
http://refhub.elsevier.com/S1569-190X(21)00118-0/sbref0045

	Integration and Automation of Modeling of Biological Cell Processes
	1 Introduction
	2 Background
	3 A method to model biological cells
	3.1 Structure analysis
	3.2 Devs modeling
	3.3 Model structure
	3.3.1 Periplasm
	3.3.2 Extracellular space and cytoplasm
	3.3.3 Organelle

	3.4 Model implementation
	3.4.1 Parsing SBML files
	3.4.2 Model generation
	3.4.3 Model parameter extraction

	4 Modeling and simulating metabolic pathways
	4.1 Synthetic model
	4.2 Modeling E. COLI

	5 Conclusions
	Acknowledgements
	Appendix I SBML representation of models
	Appendix II DEVS models formal specification
	Appendix III – Algorithm to calculate collisions between enzymes and metabolites in the space atomic model
	Appendix IV XML schema for the parameters of the model
	References

